This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, being an element of the class of coelement equivalence relations is equivalent to satisfying the coelement equivalence relation predicate. (Contributed by Peter Mazsa, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcoeleqvrelsrel | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcoeleqvrels | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ) ) | |
| 2 | 1cosscnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ≀ ( ◡ E ↾ 𝐴 ) ∈ V ) | |
| 3 | eleqvrelsrel | ⊢ ( ≀ ( ◡ E ↾ 𝐴 ) ∈ V → ( ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ≀ ( ◡ E ↾ 𝐴 ) ∈ EqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 5 | 1 4 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) ) |
| 6 | df-coeleqvrel | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( ◡ E ↾ 𝐴 ) ) | |
| 7 | 5 6 | bitr4di | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ CoElEqvRels ↔ CoElEqvRel 𝐴 ) ) |