This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for complex number sequences. See clim for its relational expression. (Contributed by NM, 28-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-clim | |- ~~> = { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cli | |- ~~> |
|
| 1 | vf | |- f |
|
| 2 | vy | |- y |
|
| 3 | 2 | cv | |- y |
| 4 | cc | |- CC |
|
| 5 | 3 4 | wcel | |- y e. CC |
| 6 | vx | |- x |
|
| 7 | crp | |- RR+ |
|
| 8 | vj | |- j |
|
| 9 | cz | |- ZZ |
|
| 10 | vk | |- k |
|
| 11 | cuz | |- ZZ>= |
|
| 12 | 8 | cv | |- j |
| 13 | 12 11 | cfv | |- ( ZZ>= ` j ) |
| 14 | 1 | cv | |- f |
| 15 | 10 | cv | |- k |
| 16 | 15 14 | cfv | |- ( f ` k ) |
| 17 | 16 4 | wcel | |- ( f ` k ) e. CC |
| 18 | cabs | |- abs |
|
| 19 | cmin | |- - |
|
| 20 | 16 3 19 | co | |- ( ( f ` k ) - y ) |
| 21 | 20 18 | cfv | |- ( abs ` ( ( f ` k ) - y ) ) |
| 22 | clt | |- < |
|
| 23 | 6 | cv | |- x |
| 24 | 21 23 22 | wbr | |- ( abs ` ( ( f ` k ) - y ) ) < x |
| 25 | 17 24 | wa | |- ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 26 | 25 10 13 | wral | |- A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 27 | 26 8 9 | wrex | |- E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 28 | 27 6 7 | wral | |- A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 29 | 5 28 | wa | |- ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) |
| 30 | 29 1 2 | copab | |- { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |
| 31 | 0 30 | wceq | |- ~~> = { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |