This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < x there is an element of the filter whose metric diameter is less than x . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cfil | |- CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccfil | |- CauFil |
|
| 1 | vd | |- d |
|
| 2 | cxmet | |- *Met |
|
| 3 | 2 | crn | |- ran *Met |
| 4 | 3 | cuni | |- U. ran *Met |
| 5 | vf | |- f |
|
| 6 | cfil | |- Fil |
|
| 7 | 1 | cv | |- d |
| 8 | 7 | cdm | |- dom d |
| 9 | 8 | cdm | |- dom dom d |
| 10 | 9 6 | cfv | |- ( Fil ` dom dom d ) |
| 11 | vx | |- x |
|
| 12 | crp | |- RR+ |
|
| 13 | vy | |- y |
|
| 14 | 5 | cv | |- f |
| 15 | 13 | cv | |- y |
| 16 | 15 15 | cxp | |- ( y X. y ) |
| 17 | 7 16 | cima | |- ( d " ( y X. y ) ) |
| 18 | cc0 | |- 0 |
|
| 19 | cico | |- [,) |
|
| 20 | 11 | cv | |- x |
| 21 | 18 20 19 | co | |- ( 0 [,) x ) |
| 22 | 17 21 | wss | |- ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 23 | 22 13 14 | wrex | |- E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 24 | 23 11 12 | wral | |- A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) |
| 25 | 24 5 10 | crab | |- { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } |
| 26 | 1 4 25 | cmpt | |- ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 27 | 0 26 | wceq | |- CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |