This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy filters on a given extended metric space. A Cauchy filter is a filter on the set such that for every 0 < x there is an element of the filter whose metric diameter is less than x . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cfil |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccfil | ||
| 1 | vd | ||
| 2 | cxmet | ||
| 3 | 2 | crn | |
| 4 | 3 | cuni | |
| 5 | vf | ||
| 6 | cfil | ||
| 7 | 1 | cv | |
| 8 | 7 | cdm | |
| 9 | 8 | cdm | |
| 10 | 9 6 | cfv | |
| 11 | vx | ||
| 12 | crp | ||
| 13 | vy | ||
| 14 | 5 | cv | |
| 15 | 13 | cv | |
| 16 | 15 15 | cxp | |
| 17 | 7 16 | cima | |
| 18 | cc0 | ||
| 19 | cico | ||
| 20 | 11 | cv | |
| 21 | 18 20 19 | co | |
| 22 | 17 21 | wss | |
| 23 | 22 13 14 | wrex | |
| 24 | 23 11 12 | wral | |
| 25 | 24 5 10 | crab | |
| 26 | 1 4 25 | cmpt | |
| 27 | 0 26 | wceq |