This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
df-atan
Metamath Proof Explorer
Description: Define the arctangent function. See also remarks for df-asin . Unlike
arcsin and arccos , this function is not defined everywhere,
because tan ( z ) =/= +-i for all z e. CC . For all other
z , there is a formula for arctan ( z ) in terms of log , and
we take that as the definition. Branch points are at +- i ; branch
cuts are on the pure imaginary axis not between -ui and i ,
which is to say
{ z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } .
(Contributed by Mario Carneiro , 31-Mar-2015)
Ref
Expression
Assertion
df-atan
⊢ arctan = x ∈ ℂ ∖ − i i ⟼ i 2 ⁢ log ⁡ 1 − i ⁢ x − log ⁡ 1 + i ⁢ x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
catan
class arctan
1
vx
setvar x
2
cc
class ℂ
3
ci
class i
4
3
cneg
class − i
5
4 3
cpr
class − i i
6
2 5
cdif
class ℂ ∖ − i i
7
cdiv
class ÷
8
c2
class 2
9
3 8 7
co
class i 2
10
cmul
class ×
11
clog
class log
12
c1
class 1
13
cmin
class −
14
1
cv
setvar x
15
3 14 10
co
class i ⁢ x
16
12 15 13
co
class 1 − i ⁢ x
17
16 11
cfv
class log ⁡ 1 − i ⁢ x
18
caddc
class +
19
12 15 18
co
class 1 + i ⁢ x
20
19 11
cfv
class log ⁡ 1 + i ⁢ x
21
17 20 13
co
class log ⁡ 1 − i ⁢ x − log ⁡ 1 + i ⁢ x
22
9 21 10
co
class i 2 ⁢ log ⁡ 1 − i ⁢ x − log ⁡ 1 + i ⁢ x
23
1 6 22
cmpt
class x ∈ ℂ ∖ − i i ⟼ i 2 ⁢ log ⁡ 1 − i ⁢ x − log ⁡ 1 + i ⁢ x
24
0 23
wceq
wff arctan = x ∈ ℂ ∖ − i i ⟼ i 2 ⁢ log ⁡ 1 − i ⁢ x − log ⁡ 1 + i ⁢ x