This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Definition of the structure product
df-0g
Metamath Proof Explorer
Definition df-0g
Description: Define group identity element. Remark: this definition is required here
because the symbol 0g is already used in df-gsum . The related
theorems are provided later, see grpidval . (Contributed by NM , 20-Aug-2011)
Ref
Expression
Assertion
df-0g
⊢ 0 𝑔 = g ∈ V ⟼ ι e | e ∈ Base g ∧ ∀ x ∈ Base g e + g x = x ∧ x + g e = x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
c0g
class 0 𝑔
1
vg
setvar g
2
cvv
class V
3
ve
setvar e
4
3
cv
setvar e
5
cbs
class Base
6
1
cv
setvar g
7
6 5
cfv
class Base g
8
4 7
wcel
wff e ∈ Base g
9
vx
setvar x
10
cplusg
class + 𝑔
11
6 10
cfv
class + g
12
9
cv
setvar x
13
4 12 11
co
class e + g x
14
13 12
wceq
wff e + g x = x
15
12 4 11
co
class x + g e
16
15 12
wceq
wff x + g e = x
17
14 16
wa
wff e + g x = x ∧ x + g e = x
18
17 9 7
wral
wff ∀ x ∈ Base g e + g x = x ∧ x + g e = x
19
8 18
wa
wff e ∈ Base g ∧ ∀ x ∈ Base g e + g x = x ∧ x + g e = x
20
19 3
cio
class ι e | e ∈ Base g ∧ ∀ x ∈ Base g e + g x = x ∧ x + g e = x
21
1 2 20
cmpt
class g ∈ V ⟼ ι e | e ∈ Base g ∧ ∀ x ∈ Base g e + g x = x ∧ x + g e = x
22
0 21
wceq
wff 0 𝑔 = g ∈ V ⟼ ι e | e ∈ Base g ∧ ∀ x ∈ Base g e + g x = x ∧ x + g e = x