This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decmul10add.1 | ⊢ 𝐴 ∈ ℕ0 | |
| decmul10add.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| decmul10add.3 | ⊢ 𝑀 ∈ ℕ0 | ||
| decmul10add.4 | ⊢ 𝐸 = ( 𝑀 · 𝐴 ) | ||
| decmul10add.5 | ⊢ 𝐹 = ( 𝑀 · 𝐵 ) | ||
| Assertion | decmul10add | ⊢ ( 𝑀 · ; 𝐴 𝐵 ) = ( ; 𝐸 0 + 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul10add.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decmul10add.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decmul10add.3 | ⊢ 𝑀 ∈ ℕ0 | |
| 4 | decmul10add.4 | ⊢ 𝐸 = ( 𝑀 · 𝐴 ) | |
| 5 | decmul10add.5 | ⊢ 𝐹 = ( 𝑀 · 𝐵 ) | |
| 6 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 7 | 6 | oveq2i | ⊢ ( 𝑀 · ; 𝐴 𝐵 ) = ( 𝑀 · ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ) |
| 8 | 3 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 9 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 10 | 9 1 | nn0mulcli | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℕ0 |
| 11 | 10 | nn0cni | ⊢ ( ; 1 0 · 𝐴 ) ∈ ℂ |
| 12 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 13 | 8 11 12 | adddii | ⊢ ( 𝑀 · ( ( ; 1 0 · 𝐴 ) + 𝐵 ) ) = ( ( 𝑀 · ( ; 1 0 · 𝐴 ) ) + ( 𝑀 · 𝐵 ) ) |
| 14 | 9 | nn0cni | ⊢ ; 1 0 ∈ ℂ |
| 15 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 16 | 8 14 15 | mul12i | ⊢ ( 𝑀 · ( ; 1 0 · 𝐴 ) ) = ( ; 1 0 · ( 𝑀 · 𝐴 ) ) |
| 17 | 3 1 | nn0mulcli | ⊢ ( 𝑀 · 𝐴 ) ∈ ℕ0 |
| 18 | 17 | dec0u | ⊢ ( ; 1 0 · ( 𝑀 · 𝐴 ) ) = ; ( 𝑀 · 𝐴 ) 0 |
| 19 | 4 | eqcomi | ⊢ ( 𝑀 · 𝐴 ) = 𝐸 |
| 20 | 19 | deceq1i | ⊢ ; ( 𝑀 · 𝐴 ) 0 = ; 𝐸 0 |
| 21 | 16 18 20 | 3eqtri | ⊢ ( 𝑀 · ( ; 1 0 · 𝐴 ) ) = ; 𝐸 0 |
| 22 | 5 | eqcomi | ⊢ ( 𝑀 · 𝐵 ) = 𝐹 |
| 23 | 21 22 | oveq12i | ⊢ ( ( 𝑀 · ( ; 1 0 · 𝐴 ) ) + ( 𝑀 · 𝐵 ) ) = ( ; 𝐸 0 + 𝐹 ) |
| 24 | 7 13 23 | 3eqtri | ⊢ ( 𝑀 · ; 𝐴 𝐵 ) = ( ; 𝐸 0 + 𝐹 ) |