This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decmul10add.1 | |- A e. NN0 |
|
| decmul10add.2 | |- B e. NN0 |
||
| decmul10add.3 | |- M e. NN0 |
||
| decmul10add.4 | |- E = ( M x. A ) |
||
| decmul10add.5 | |- F = ( M x. B ) |
||
| Assertion | decmul10add | |- ( M x. ; A B ) = ( ; E 0 + F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul10add.1 | |- A e. NN0 |
|
| 2 | decmul10add.2 | |- B e. NN0 |
|
| 3 | decmul10add.3 | |- M e. NN0 |
|
| 4 | decmul10add.4 | |- E = ( M x. A ) |
|
| 5 | decmul10add.5 | |- F = ( M x. B ) |
|
| 6 | dfdec10 | |- ; A B = ( ( ; 1 0 x. A ) + B ) |
|
| 7 | 6 | oveq2i | |- ( M x. ; A B ) = ( M x. ( ( ; 1 0 x. A ) + B ) ) |
| 8 | 3 | nn0cni | |- M e. CC |
| 9 | 10nn0 | |- ; 1 0 e. NN0 |
|
| 10 | 9 1 | nn0mulcli | |- ( ; 1 0 x. A ) e. NN0 |
| 11 | 10 | nn0cni | |- ( ; 1 0 x. A ) e. CC |
| 12 | 2 | nn0cni | |- B e. CC |
| 13 | 8 11 12 | adddii | |- ( M x. ( ( ; 1 0 x. A ) + B ) ) = ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) |
| 14 | 9 | nn0cni | |- ; 1 0 e. CC |
| 15 | 1 | nn0cni | |- A e. CC |
| 16 | 8 14 15 | mul12i | |- ( M x. ( ; 1 0 x. A ) ) = ( ; 1 0 x. ( M x. A ) ) |
| 17 | 3 1 | nn0mulcli | |- ( M x. A ) e. NN0 |
| 18 | 17 | dec0u | |- ( ; 1 0 x. ( M x. A ) ) = ; ( M x. A ) 0 |
| 19 | 4 | eqcomi | |- ( M x. A ) = E |
| 20 | 19 | deceq1i | |- ; ( M x. A ) 0 = ; E 0 |
| 21 | 16 18 20 | 3eqtri | |- ( M x. ( ; 1 0 x. A ) ) = ; E 0 |
| 22 | 5 | eqcomi | |- ( M x. B ) = F |
| 23 | 21 22 | oveq12i | |- ( ( M x. ( ; 1 0 x. A ) ) + ( M x. B ) ) = ( ; E 0 + F ) |
| 24 | 7 13 23 | 3eqtri | |- ( M x. ; A B ) = ( ; E 0 + F ) |