This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 6p5e11 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 | ||
| 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 | ||
| 6p5lem.4 | ⊢ 𝐵 = ( 𝐷 + 1 ) | ||
| 6p5lem.5 | ⊢ 𝐶 = ( 𝐸 + 1 ) | ||
| 6p5lem.6 | ⊢ ( 𝐴 + 𝐷 ) = ; 1 𝐸 | ||
| Assertion | 6p5lem | ⊢ ( 𝐴 + 𝐵 ) = ; 1 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 | |
| 3 | 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 | |
| 4 | 6p5lem.4 | ⊢ 𝐵 = ( 𝐷 + 1 ) | |
| 5 | 6p5lem.5 | ⊢ 𝐶 = ( 𝐸 + 1 ) | |
| 6 | 6p5lem.6 | ⊢ ( 𝐴 + 𝐷 ) = ; 1 𝐸 | |
| 7 | 4 | oveq2i | ⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 + ( 𝐷 + 1 ) ) |
| 8 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 9 | 2 | nn0cni | ⊢ 𝐷 ∈ ℂ |
| 10 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 11 | 8 9 10 | addassi | ⊢ ( ( 𝐴 + 𝐷 ) + 1 ) = ( 𝐴 + ( 𝐷 + 1 ) ) |
| 12 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 13 | 5 | eqcomi | ⊢ ( 𝐸 + 1 ) = 𝐶 |
| 14 | 12 3 13 6 | decsuc | ⊢ ( ( 𝐴 + 𝐷 ) + 1 ) = ; 1 𝐶 |
| 15 | 7 11 14 | 3eqtr2i | ⊢ ( 𝐴 + 𝐵 ) = ; 1 𝐶 |