This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ | ||
| dec5dvds.3 | ⊢ 𝐵 < 5 | ||
| dec5dvds2.4 | ⊢ ( 5 + 𝐵 ) = 𝐶 | ||
| Assertion | dec5dvds2 | ⊢ ¬ 5 ∥ ; 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dec5dvds.2 | ⊢ 𝐵 ∈ ℕ | |
| 3 | dec5dvds.3 | ⊢ 𝐵 < 5 | |
| 4 | dec5dvds2.4 | ⊢ ( 5 + 𝐵 ) = 𝐶 | |
| 5 | 1 2 3 | dec5dvds | ⊢ ¬ 5 ∥ ; 𝐴 𝐵 |
| 6 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 7 | 6 | nn0zi | ⊢ 5 ∈ ℤ |
| 8 | 2 | nnnn0i | ⊢ 𝐵 ∈ ℕ0 |
| 9 | 1 8 | deccl | ⊢ ; 𝐴 𝐵 ∈ ℕ0 |
| 10 | 9 | nn0zi | ⊢ ; 𝐴 𝐵 ∈ ℤ |
| 11 | dvdsadd | ⊢ ( ( 5 ∈ ℤ ∧ ; 𝐴 𝐵 ∈ ℤ ) → ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ( 5 + ; 𝐴 𝐵 ) ) ) | |
| 12 | 7 10 11 | mp2an | ⊢ ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ( 5 + ; 𝐴 𝐵 ) ) |
| 13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 14 | 6 | dec0h | ⊢ 5 = ; 0 5 |
| 15 | eqid | ⊢ ; 𝐴 𝐵 = ; 𝐴 𝐵 | |
| 16 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 17 | 16 | addlidi | ⊢ ( 0 + 𝐴 ) = 𝐴 |
| 18 | 13 6 1 8 14 15 17 4 | decadd | ⊢ ( 5 + ; 𝐴 𝐵 ) = ; 𝐴 𝐶 |
| 19 | 18 | breq2i | ⊢ ( 5 ∥ ( 5 + ; 𝐴 𝐵 ) ↔ 5 ∥ ; 𝐴 𝐶 ) |
| 20 | 12 19 | bitri | ⊢ ( 5 ∥ ; 𝐴 𝐵 ↔ 5 ∥ ; 𝐴 𝐶 ) |
| 21 | 5 20 | mtbi | ⊢ ¬ 5 ∥ ; 𝐴 𝐶 |