This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the power function on complex numbers. Note that the value of this function when x = 0 and ( Rey ) <_ 0 , y =/= 0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cxp | ⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccxp | ⊢ ↑𝑐 | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cc0 | ⊢ 0 | |
| 6 | 4 5 | wceq | ⊢ 𝑥 = 0 |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 5 | wceq | ⊢ 𝑦 = 0 |
| 9 | c1 | ⊢ 1 | |
| 10 | 8 9 5 | cif | ⊢ if ( 𝑦 = 0 , 1 , 0 ) |
| 11 | ce | ⊢ exp | |
| 12 | cmul | ⊢ · | |
| 13 | clog | ⊢ log | |
| 14 | 4 13 | cfv | ⊢ ( log ‘ 𝑥 ) |
| 15 | 7 14 12 | co | ⊢ ( 𝑦 · ( log ‘ 𝑥 ) ) |
| 16 | 15 11 | cfv | ⊢ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) |
| 17 | 6 10 16 | cif | ⊢ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) |
| 18 | 1 3 2 2 17 | cmpo | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |
| 19 | 0 18 | wceq | ⊢ ↑𝑐 = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ if ( 𝑥 = 0 , if ( 𝑦 = 0 , 1 , 0 ) , ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ) |