This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 1 ) ) ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 1 ) ) ) |
| 4 | 3 | 3impa | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 1 ) ) ) |
| 5 | cxp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 7 | 6 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · 𝐴 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 1 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · 𝐴 ) ) |