This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic covering lattice has the exchange property. ( atexch analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlexch3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvlexch3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvlexch3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvlexch3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| cvlexch3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| cvlexch3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvlexch3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlexch3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvlexch3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvlexch3.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvlexch3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | cvlexch3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 6 | cvlexch3.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 7 | cvlatl | ⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐾 ∈ AtLat ) |
| 9 | simpr1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐴 ) | |
| 10 | simpr3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 11 | 1 2 4 5 6 | atnle | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
| 13 | 1 2 3 6 | cvlexch1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 14 | 13 | 3expia | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) |
| 15 | 12 14 | sylbird | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) |
| 16 | 15 | 3impia | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |