This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic covering lattice has the exchange property. ( atexch analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlexch3.b | |- B = ( Base ` K ) |
|
| cvlexch3.l | |- .<_ = ( le ` K ) |
||
| cvlexch3.j | |- .\/ = ( join ` K ) |
||
| cvlexch3.m | |- ./\ = ( meet ` K ) |
||
| cvlexch3.z | |- .0. = ( 0. ` K ) |
||
| cvlexch3.a | |- A = ( Atoms ` K ) |
||
| Assertion | cvlexch3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlexch3.b | |- B = ( Base ` K ) |
|
| 2 | cvlexch3.l | |- .<_ = ( le ` K ) |
|
| 3 | cvlexch3.j | |- .\/ = ( join ` K ) |
|
| 4 | cvlexch3.m | |- ./\ = ( meet ` K ) |
|
| 5 | cvlexch3.z | |- .0. = ( 0. ` K ) |
|
| 6 | cvlexch3.a | |- A = ( Atoms ` K ) |
|
| 7 | cvlatl | |- ( K e. CvLat -> K e. AtLat ) |
|
| 8 | 7 | adantr | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> K e. AtLat ) |
| 9 | simpr1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> P e. A ) |
|
| 10 | simpr3 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> X e. B ) |
|
| 11 | 1 2 4 5 6 | atnle | |- ( ( K e. AtLat /\ P e. A /\ X e. B ) -> ( -. P .<_ X <-> ( P ./\ X ) = .0. ) ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( -. P .<_ X <-> ( P ./\ X ) = .0. ) ) |
| 13 | 1 2 3 6 | cvlexch1 | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ -. P .<_ X ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |
| 14 | 13 | 3expia | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( -. P .<_ X -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) ) |
| 15 | 12 14 | sylbird | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) ) -> ( ( P ./\ X ) = .0. -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) ) |
| 16 | 15 | 3impia | |- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ X e. B ) /\ ( P ./\ X ) = .0. ) -> ( P .<_ ( X .\/ Q ) -> Q .<_ ( X .\/ P ) ) ) |