This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvlexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvlexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvlexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvlexchb1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlexch.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvlexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvlexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | cvlexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | cvllat | ⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
| 7 | simpr3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simpr2 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐴 ) | |
| 9 | 1 4 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 10 | 8 9 | syl | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐵 ) |
| 11 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 12 | 6 7 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 15 | simpr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) | |
| 16 | simpr1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐴 ) | |
| 17 | 1 4 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 18 | 16 17 | syl | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐵 ) |
| 19 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 | 6 7 10 19 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 21 | 1 2 3 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 22 | 6 7 18 20 21 | syl13anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 23 | 22 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 25 | 14 15 24 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 26 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 27 | 6 7 18 26 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 30 | 1 2 3 4 | cvlexch1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 32 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 33 | 6 7 18 32 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 34 | 1 2 3 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 35 | 6 7 10 33 34 | syl13anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 36 | 35 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 38 | 29 31 37 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 39 | 1 2 | latasymb | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 40 | 6 33 20 39 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 41 | 40 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 43 | 25 38 42 | mpbi2and | ⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 44 | 43 | ex | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 45 | 1 2 3 | latlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 46 | 6 7 18 45 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 47 | breq2 | ⊢ ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ↔ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) | |
| 48 | 46 47 | syl5ibcom | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 49 | 48 | 3adant3 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 50 | 44 49 | impbid | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |