This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvlatexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| cvlatexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| cvlatexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | cvlatexch2 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlatexch.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | cvlatexch.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | cvlatexch.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | 1 2 3 | cvlatexch1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑅 ∨ 𝑃 ) ) ) |
| 5 | cvllat | ⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) | |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝐾 ∈ Lat ) |
| 7 | simp22 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑄 ∈ 𝐴 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | 8 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | 7 9 | syl | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 11 | simp23 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑅 ∈ 𝐴 ) | |
| 12 | 8 3 | atbase | ⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 14 | 8 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
| 15 | 6 10 13 14 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
| 16 | 15 | breq2d | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
| 17 | simp21 | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑃 ∈ 𝐴 ) | |
| 18 | 8 3 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 19 | 17 18 | syl | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 20 | 8 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑃 ) ) |
| 21 | 6 19 13 20 | syl3anc | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑃 ) ) |
| 22 | 21 | breq2d | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) ↔ 𝑄 ≤ ( 𝑅 ∨ 𝑃 ) ) ) |
| 23 | 4 16 22 | 3imtr4d | ⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) ) ) |