This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation expressing B covers A , which means that B is larger than A and there is nothing in between. Definition 3.2.18 of PtakPulmannova p. 68. (Contributed by NM, 4-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cvbr | |- ( ( A e. CH /\ B e. CH ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( y = A -> ( y e. CH <-> A e. CH ) ) |
|
| 2 | 1 | anbi1d | |- ( y = A -> ( ( y e. CH /\ z e. CH ) <-> ( A e. CH /\ z e. CH ) ) ) |
| 3 | psseq1 | |- ( y = A -> ( y C. z <-> A C. z ) ) |
|
| 4 | psseq1 | |- ( y = A -> ( y C. x <-> A C. x ) ) |
|
| 5 | 4 | anbi1d | |- ( y = A -> ( ( y C. x /\ x C. z ) <-> ( A C. x /\ x C. z ) ) ) |
| 6 | 5 | rexbidv | |- ( y = A -> ( E. x e. CH ( y C. x /\ x C. z ) <-> E. x e. CH ( A C. x /\ x C. z ) ) ) |
| 7 | 6 | notbid | |- ( y = A -> ( -. E. x e. CH ( y C. x /\ x C. z ) <-> -. E. x e. CH ( A C. x /\ x C. z ) ) ) |
| 8 | 3 7 | anbi12d | |- ( y = A -> ( ( y C. z /\ -. E. x e. CH ( y C. x /\ x C. z ) ) <-> ( A C. z /\ -. E. x e. CH ( A C. x /\ x C. z ) ) ) ) |
| 9 | 2 8 | anbi12d | |- ( y = A -> ( ( ( y e. CH /\ z e. CH ) /\ ( y C. z /\ -. E. x e. CH ( y C. x /\ x C. z ) ) ) <-> ( ( A e. CH /\ z e. CH ) /\ ( A C. z /\ -. E. x e. CH ( A C. x /\ x C. z ) ) ) ) ) |
| 10 | eleq1 | |- ( z = B -> ( z e. CH <-> B e. CH ) ) |
|
| 11 | 10 | anbi2d | |- ( z = B -> ( ( A e. CH /\ z e. CH ) <-> ( A e. CH /\ B e. CH ) ) ) |
| 12 | psseq2 | |- ( z = B -> ( A C. z <-> A C. B ) ) |
|
| 13 | psseq2 | |- ( z = B -> ( x C. z <-> x C. B ) ) |
|
| 14 | 13 | anbi2d | |- ( z = B -> ( ( A C. x /\ x C. z ) <-> ( A C. x /\ x C. B ) ) ) |
| 15 | 14 | rexbidv | |- ( z = B -> ( E. x e. CH ( A C. x /\ x C. z ) <-> E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 16 | 15 | notbid | |- ( z = B -> ( -. E. x e. CH ( A C. x /\ x C. z ) <-> -. E. x e. CH ( A C. x /\ x C. B ) ) ) |
| 17 | 12 16 | anbi12d | |- ( z = B -> ( ( A C. z /\ -. E. x e. CH ( A C. x /\ x C. z ) ) <-> ( A C. B /\ -. E. x e. CH ( A C. x /\ x C. B ) ) ) ) |
| 18 | 11 17 | anbi12d | |- ( z = B -> ( ( ( A e. CH /\ z e. CH ) /\ ( A C. z /\ -. E. x e. CH ( A C. x /\ x C. z ) ) ) <-> ( ( A e. CH /\ B e. CH ) /\ ( A C. B /\ -. E. x e. CH ( A C. x /\ x C. B ) ) ) ) ) |
| 19 | df-cv | |- |
|
| 20 | 9 18 19 | brabg | |- ( ( A e. CH /\ B e. CH ) -> ( A |
| 21 | 20 | bianabs | |- ( ( A e. CH /\ B e. CH ) -> ( A |