This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a complete uniform space, any Cauchy filter C has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cuspcvg.1 | |- B = ( Base ` W ) |
|
| cuspcvg.2 | |- J = ( TopOpen ` W ) |
||
| Assertion | cuspcvg | |- ( ( W e. CUnifSp /\ C e. ( CauFilU ` ( UnifSt ` W ) ) /\ C e. ( Fil ` B ) ) -> ( J fLim C ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cuspcvg.1 | |- B = ( Base ` W ) |
|
| 2 | cuspcvg.2 | |- J = ( TopOpen ` W ) |
|
| 3 | eleq1 | |- ( c = C -> ( c e. ( CauFilU ` ( UnifSt ` W ) ) <-> C e. ( CauFilU ` ( UnifSt ` W ) ) ) ) |
|
| 4 | 2 | eqcomi | |- ( TopOpen ` W ) = J |
| 5 | 4 | a1i | |- ( c = C -> ( TopOpen ` W ) = J ) |
| 6 | id | |- ( c = C -> c = C ) |
|
| 7 | 5 6 | oveq12d | |- ( c = C -> ( ( TopOpen ` W ) fLim c ) = ( J fLim C ) ) |
| 8 | 7 | neeq1d | |- ( c = C -> ( ( ( TopOpen ` W ) fLim c ) =/= (/) <-> ( J fLim C ) =/= (/) ) ) |
| 9 | 3 8 | imbi12d | |- ( c = C -> ( ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) <-> ( C e. ( CauFilU ` ( UnifSt ` W ) ) -> ( J fLim C ) =/= (/) ) ) ) |
| 10 | iscusp | |- ( W e. CUnifSp <-> ( W e. UnifSp /\ A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) ) |
|
| 11 | 10 | simprbi | |- ( W e. CUnifSp -> A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
| 12 | 11 | adantr | |- ( ( W e. CUnifSp /\ C e. ( Fil ` B ) ) -> A. c e. ( Fil ` ( Base ` W ) ) ( c e. ( CauFilU ` ( UnifSt ` W ) ) -> ( ( TopOpen ` W ) fLim c ) =/= (/) ) ) |
| 13 | simpr | |- ( ( W e. CUnifSp /\ C e. ( Fil ` B ) ) -> C e. ( Fil ` B ) ) |
|
| 14 | 1 | fveq2i | |- ( Fil ` B ) = ( Fil ` ( Base ` W ) ) |
| 15 | 13 14 | eleqtrdi | |- ( ( W e. CUnifSp /\ C e. ( Fil ` B ) ) -> C e. ( Fil ` ( Base ` W ) ) ) |
| 16 | 9 12 15 | rspcdva | |- ( ( W e. CUnifSp /\ C e. ( Fil ` B ) ) -> ( C e. ( CauFilU ` ( UnifSt ` W ) ) -> ( J fLim C ) =/= (/) ) ) |
| 17 | 16 | 3impia | |- ( ( W e. CUnifSp /\ C e. ( Fil ` B ) /\ C e. ( CauFilU ` ( UnifSt ` W ) ) ) -> ( J fLim C ) =/= (/) ) |
| 18 | 17 | 3com23 | |- ( ( W e. CUnifSp /\ C e. ( CauFilU ` ( UnifSt ` W ) ) /\ C e. ( Fil ` B ) ) -> ( J fLim C ) =/= (/) ) |