This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed subspaces of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| cssval.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | cssval | |- ( W e. X -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| 2 | cssval.c | |- C = ( ClSubSp ` W ) |
|
| 3 | elex | |- ( W e. X -> W e. _V ) |
|
| 4 | fveq2 | |- ( w = W -> ( ocv ` w ) = ( ocv ` W ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( w = W -> ( ocv ` w ) = ._|_ ) |
| 6 | 5 | fveq1d | |- ( w = W -> ( ( ocv ` w ) ` s ) = ( ._|_ ` s ) ) |
| 7 | 5 6 | fveq12d | |- ( w = W -> ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) = ( ._|_ ` ( ._|_ ` s ) ) ) |
| 8 | 7 | eqeq2d | |- ( w = W -> ( s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) <-> s = ( ._|_ ` ( ._|_ ` s ) ) ) ) |
| 9 | 8 | abbidv | |- ( w = W -> { s | s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) } = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |
| 10 | df-css | |- ClSubSp = ( w e. _V |-> { s | s = ( ( ocv ` w ) ` ( ( ocv ` w ) ` s ) ) } ) |
|
| 11 | fvex | |- ( Base ` W ) e. _V |
|
| 12 | 11 | pwex | |- ~P ( Base ` W ) e. _V |
| 13 | id | |- ( s = ( ._|_ ` ( ._|_ ` s ) ) -> s = ( ._|_ ` ( ._|_ ` s ) ) ) |
|
| 14 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 15 | 14 1 | ocvss | |- ( ._|_ ` ( ._|_ ` s ) ) C_ ( Base ` W ) |
| 16 | fvex | |- ( ._|_ ` ( ._|_ ` s ) ) e. _V |
|
| 17 | 16 | elpw | |- ( ( ._|_ ` ( ._|_ ` s ) ) e. ~P ( Base ` W ) <-> ( ._|_ ` ( ._|_ ` s ) ) C_ ( Base ` W ) ) |
| 18 | 15 17 | mpbir | |- ( ._|_ ` ( ._|_ ` s ) ) e. ~P ( Base ` W ) |
| 19 | 13 18 | eqeltrdi | |- ( s = ( ._|_ ` ( ._|_ ` s ) ) -> s e. ~P ( Base ` W ) ) |
| 20 | 19 | abssi | |- { s | s = ( ._|_ ` ( ._|_ ` s ) ) } C_ ~P ( Base ` W ) |
| 21 | 12 20 | ssexi | |- { s | s = ( ._|_ ` ( ._|_ ` s ) ) } e. _V |
| 22 | 9 10 21 | fvmpt | |- ( W e. _V -> ( ClSubSp ` W ) = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |
| 23 | 2 22 | eqtrid | |- ( W e. _V -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |
| 24 | 3 23 | syl | |- ( W e. X -> C = { s | s = ( ._|_ ` ( ._|_ ` s ) ) } ) |