This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace of a pre-Hilbert space is a linear subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csslss.c | |- C = ( ClSubSp ` W ) |
|
| csslss.l | |- L = ( LSubSp ` W ) |
||
| Assertion | csslss | |- ( ( W e. PreHil /\ S e. C ) -> S e. L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csslss.c | |- C = ( ClSubSp ` W ) |
|
| 2 | csslss.l | |- L = ( LSubSp ` W ) |
|
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 4 | 3 1 | cssi | |- ( S e. C -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) |
| 5 | 4 | adantl | |- ( ( W e. PreHil /\ S e. C ) -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) |
| 6 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 7 | 6 3 | ocvss | |- ( ( ocv ` W ) ` S ) C_ ( Base ` W ) |
| 8 | 7 | a1i | |- ( S e. C -> ( ( ocv ` W ) ` S ) C_ ( Base ` W ) ) |
| 9 | 6 3 2 | ocvlss | |- ( ( W e. PreHil /\ ( ( ocv ` W ) ` S ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) e. L ) |
| 10 | 8 9 | sylan2 | |- ( ( W e. PreHil /\ S e. C ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) e. L ) |
| 11 | 5 10 | eqeltrd | |- ( ( W e. PreHil /\ S e. C ) -> S e. L ) |