This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018) (Revised by Mario Carneiro/AV, 25-Oct-2018) (Proof shortened by SN, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwsexa | ⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | ⊢ ( ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) |
| 3 | 2 | abbii | ⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) } |
| 4 | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V | |
| 5 | 4 | abrexex | ⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) } ∈ V |
| 6 | 3 5 | eqeltri | ⊢ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |
| 7 | rabssab | ⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ⊆ { 𝑤 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } | |
| 8 | 6 7 | ssexi | ⊢ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } ∈ V |