This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Cyclical shifts of words
cshwsexa
Metamath Proof Explorer
Description: The class of (different!) words resulting by cyclically shifting
something (not necessarily a word) is a set. (Contributed by AV , 8-Jun-2018) (Revised by Mario Carneiro/AV , 25-Oct-2018) (Proof
shortened by SN , 15-Jan-2025)
Ref
Expression
Assertion
cshwsexa
⊢ w ∈ Word V | ∃ n ∈ 0 ..^ W W cyclShift n = w ∈ V
Proof
Step
Hyp
Ref
Expression
1
eqcom
⊢ W cyclShift n = w ↔ w = W cyclShift n
2
1
rexbii
⊢ ∃ n ∈ 0 ..^ W W cyclShift n = w ↔ ∃ n ∈ 0 ..^ W w = W cyclShift n
3
2
abbii
⊢ w | ∃ n ∈ 0 ..^ W W cyclShift n = w = w | ∃ n ∈ 0 ..^ W w = W cyclShift n
4
ovex
⊢ 0 ..^ W ∈ V
5
4
abrexex
⊢ w | ∃ n ∈ 0 ..^ W w = W cyclShift n ∈ V
6
3 5
eqeltri
⊢ w | ∃ n ∈ 0 ..^ W W cyclShift n = w ∈ V
7
rabssab
⊢ w ∈ Word V | ∃ n ∈ 0 ..^ W W cyclShift n = w ⊆ w | ∃ n ∈ 0 ..^ W W cyclShift n = w
8
6 7
ssexi
⊢ w ∈ Word V | ∃ n ∈ 0 ..^ W W cyclShift n = w ∈ V