This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018) (Revised by Mario Carneiro/AV, 25-Oct-2018) (Proof shortened by SN, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwsexa | |- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom | |- ( ( W cyclShift n ) = w <-> w = ( W cyclShift n ) ) |
|
| 2 | 1 | rexbii | |- ( E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w <-> E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) ) |
| 3 | 2 | abbii | |- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } = { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } |
| 4 | ovex | |- ( 0 ..^ ( # ` W ) ) e. _V |
|
| 5 | 4 | abrexex | |- { w | E. n e. ( 0 ..^ ( # ` W ) ) w = ( W cyclShift n ) } e. _V |
| 6 | 3 5 | eqeltri | |- { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |
| 7 | rabssab | |- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } C_ { w | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } |
|
| 8 | 6 7 | ssexi | |- { w e. Word V | E. n e. ( 0 ..^ ( # ` W ) ) ( W cyclShift n ) = w } e. _V |