This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Cyclical shifts of words
cshweqdifid
Metamath Proof Explorer
Description: If cyclically shifting a word by two positions results in the same word,
cyclically shifting the word by the difference of these two positions
results in the original word itself. (Contributed by AV , 21-Apr-2018)
(Revised by AV , 7-Jun-2018) (Revised by AV , 1-Nov-2018)
Ref
Expression
Assertion
cshweqdifid
⊢ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ → W cyclShift N = W cyclShift M → W cyclShift M − N = W
Proof
Step
Hyp
Ref
Expression
1
id
⊢ W ∈ Word V → W ∈ Word V
2
1
ancli
⊢ W ∈ Word V → W ∈ Word V ∧ W ∈ Word V
3
2
anim1i
⊢ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ → W ∈ Word V ∧ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ
4
3
3impb
⊢ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ → W ∈ Word V ∧ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ
5
cshweqdif2
⊢ W ∈ Word V ∧ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ → W cyclShift N = W cyclShift M → W cyclShift M − N = W
6
4 5
syl
⊢ W ∈ Word V ∧ N ∈ ℤ ∧ M ∈ ℤ → W cyclShift N = W cyclShift M → W cyclShift M − N = W