This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the singleton of a class. csbsng is derived from the virtual deduction proof csbsngVD . (Contributed by Alan Sare, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbsng | |- ( A e. V -> [_ A / x ]_ { B } = { [_ A / x ]_ B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab | |- [_ A / x ]_ { y | y = B } = { y | [. A / x ]. y = B } |
|
| 2 | sbceq2g | |- ( A e. V -> ( [. A / x ]. y = B <-> y = [_ A / x ]_ B ) ) |
|
| 3 | 2 | abbidv | |- ( A e. V -> { y | [. A / x ]. y = B } = { y | y = [_ A / x ]_ B } ) |
| 4 | 1 3 | eqtrid | |- ( A e. V -> [_ A / x ]_ { y | y = B } = { y | y = [_ A / x ]_ B } ) |
| 5 | df-sn | |- { B } = { y | y = B } |
|
| 6 | 5 | csbeq2i | |- [_ A / x ]_ { B } = [_ A / x ]_ { y | y = B } |
| 7 | df-sn | |- { [_ A / x ]_ B } = { y | y = [_ A / x ]_ B } |
|
| 8 | 4 6 7 | 3eqtr4g | |- ( A e. V -> [_ A / x ]_ { B } = { [_ A / x ]_ B } ) |