This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbiota | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | ⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | 2 | iotabidv | ⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑧 = 𝐴 → ( ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 5 | vex | ⊢ 𝑧 ∈ V | |
| 6 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 7 | 6 | nfiotaw | ⊢ Ⅎ 𝑥 ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 8 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 9 | 8 | iotabidv | ⊢ ( 𝑥 = 𝑧 → ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 10 | 5 7 9 | csbief | ⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 | 4 10 | vtoclg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 12 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ∅ ) | |
| 13 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) | |
| 14 | 13 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 15 | 14 | nexdv | ⊢ ( ¬ 𝐴 ∈ V → ¬ ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 16 | euex | ⊢ ( ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) | |
| 17 | 16 | con3i | ⊢ ( ¬ ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ¬ ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 18 | iotanul | ⊢ ( ¬ ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) = ∅ ) | |
| 19 | 15 17 18 | 3syl | ⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) = ∅ ) |
| 20 | 12 19 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 | 11 20 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |