This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class substitution within a description binder. (Contributed by Scott Fenton, 6-Oct-2017) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbiota | |- [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | |- ( z = A -> [_ z / x ]_ ( iota y ph ) = [_ A / x ]_ ( iota y ph ) ) |
|
| 2 | dfsbcq2 | |- ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) |
|
| 3 | 2 | iotabidv | |- ( z = A -> ( iota y [ z / x ] ph ) = ( iota y [. A / x ]. ph ) ) |
| 4 | 1 3 | eqeq12d | |- ( z = A -> ( [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) <-> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) ) |
| 5 | vex | |- z e. _V |
|
| 6 | nfs1v | |- F/ x [ z / x ] ph |
|
| 7 | 6 | nfiotaw | |- F/_ x ( iota y [ z / x ] ph ) |
| 8 | sbequ12 | |- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
|
| 9 | 8 | iotabidv | |- ( x = z -> ( iota y ph ) = ( iota y [ z / x ] ph ) ) |
| 10 | 5 7 9 | csbief | |- [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) |
| 11 | 4 10 | vtoclg | |- ( A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) |
| 12 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = (/) ) |
|
| 13 | sbcex | |- ( [. A / x ]. ph -> A e. _V ) |
|
| 14 | 13 | con3i | |- ( -. A e. _V -> -. [. A / x ]. ph ) |
| 15 | 14 | nexdv | |- ( -. A e. _V -> -. E. y [. A / x ]. ph ) |
| 16 | euex | |- ( E! y [. A / x ]. ph -> E. y [. A / x ]. ph ) |
|
| 17 | 16 | con3i | |- ( -. E. y [. A / x ]. ph -> -. E! y [. A / x ]. ph ) |
| 18 | iotanul | |- ( -. E! y [. A / x ]. ph -> ( iota y [. A / x ]. ph ) = (/) ) |
|
| 19 | 15 17 18 | 3syl | |- ( -. A e. _V -> ( iota y [. A / x ]. ph ) = (/) ) |
| 20 | 12 19 | eqtr4d | |- ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) |
| 21 | 11 20 | pm2.61i | |- [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) |