This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| crngm.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | ||
| crngm.3 | ⊢ 𝑋 = ran 𝐺 | ||
| Assertion | crngm23 | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
| 2 | crngm.2 | ⊢ 𝐻 = ( 2nd ‘ 𝑅 ) | |
| 3 | crngm.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1 2 3 | crngocom | ⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 5 | 4 | 3adant3r1 | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 7 | crngorngo | ⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) | |
| 8 | 1 2 3 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) ) |
| 9 | 7 8 | sylan | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) ) |
| 10 | 1 2 3 | rngoass | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 11 | 10 | 3exp2 | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) ) ) ) |
| 12 | 11 | com34 | ⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) ) ) ) |
| 13 | 12 | 3imp2 | ⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 14 | 7 13 | sylan | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 15 | 6 9 14 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |