This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of n -times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cpn | ⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccpn | ⊢ 𝓑C𝑛 | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cc | ⊢ ℂ | |
| 3 | 2 | cpw | ⊢ 𝒫 ℂ |
| 4 | vx | ⊢ 𝑥 | |
| 5 | cn0 | ⊢ ℕ0 | |
| 6 | vf | ⊢ 𝑓 | |
| 7 | cpm | ⊢ ↑pm | |
| 8 | 1 | cv | ⊢ 𝑠 |
| 9 | 2 8 7 | co | ⊢ ( ℂ ↑pm 𝑠 ) |
| 10 | cdvn | ⊢ D𝑛 | |
| 11 | 6 | cv | ⊢ 𝑓 |
| 12 | 8 11 10 | co | ⊢ ( 𝑠 D𝑛 𝑓 ) |
| 13 | 4 | cv | ⊢ 𝑥 |
| 14 | 13 12 | cfv | ⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) |
| 15 | 11 | cdm | ⊢ dom 𝑓 |
| 16 | ccncf | ⊢ –cn→ | |
| 17 | 15 2 16 | co | ⊢ ( dom 𝑓 –cn→ ℂ ) |
| 18 | 14 17 | wcel | ⊢ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) |
| 19 | 18 6 9 | crab | ⊢ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } |
| 20 | 4 5 19 | cmpt | ⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) |
| 21 | 1 3 20 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |
| 22 | 0 21 | wceq | ⊢ 𝓑C𝑛 = ( 𝑠 ∈ 𝒫 ℂ ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ∣ ( ( 𝑠 D𝑛 𝑓 ) ‘ 𝑥 ) ∈ ( dom 𝑓 –cn→ ℂ ) } ) ) |