This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for the second argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphassi.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| cphassi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cphassi.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| cphassi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphassi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphassir | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphassi.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 2 | cphassi.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | cphassi.i | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | cphassi.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | cphassi.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | simp1l | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ ℂPreHil ) | |
| 7 | simp1r | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → i ∈ 𝐾 ) | |
| 8 | simp2 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 9 | simp3 | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 10 | 3 1 4 5 2 | cphassr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( i ∈ 𝐾 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) ) |
| 12 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 13 | 12 | oveq1i | ⊢ ( ( ∗ ‘ i ) · ( 𝐴 , 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) |
| 14 | 11 13 | eqtrdi | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) ) |