This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cotr3.a | ⊢ 𝐴 = dom 𝑅 | |
| cotr3.b | ⊢ 𝐵 = ( 𝐴 ∩ 𝐶 ) | ||
| cotr3.c | ⊢ 𝐶 = ran 𝑅 | ||
| Assertion | cotr3 | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr3.a | ⊢ 𝐴 = dom 𝑅 | |
| 2 | cotr3.b | ⊢ 𝐵 = ( 𝐴 ∩ 𝐶 ) | |
| 3 | cotr3.c | ⊢ 𝐶 = ran 𝑅 | |
| 4 | 1 | eqimss2i | ⊢ dom 𝑅 ⊆ 𝐴 |
| 5 | 1 3 | ineq12i | ⊢ ( 𝐴 ∩ 𝐶 ) = ( dom 𝑅 ∩ ran 𝑅 ) |
| 6 | 2 5 | eqtri | ⊢ 𝐵 = ( dom 𝑅 ∩ ran 𝑅 ) |
| 7 | 6 | eqimss2i | ⊢ ( dom 𝑅 ∩ ran 𝑅 ) ⊆ 𝐵 |
| 8 | 3 | eqimss2i | ⊢ ran 𝑅 ⊆ 𝐶 |
| 9 | 4 7 8 | cotr2 | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |