This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of coss1cnvres . (Contributed by Peter Mazsa, 8-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss2cnvepres | |- ,~ `' ( `' _E |` A ) = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( x e. u /\ x e. v ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1cnvres | |- ,~ `' ( `' _E |` A ) = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( u `' _E x /\ v `' _E x ) ) } |
|
| 2 | brcnvep | |- ( u e. _V -> ( u `' _E x <-> x e. u ) ) |
|
| 3 | 2 | elv | |- ( u `' _E x <-> x e. u ) |
| 4 | brcnvep | |- ( v e. _V -> ( v `' _E x <-> x e. v ) ) |
|
| 5 | 4 | elv | |- ( v `' _E x <-> x e. v ) |
| 6 | 3 5 | anbi12i | |- ( ( u `' _E x /\ v `' _E x ) <-> ( x e. u /\ x e. v ) ) |
| 7 | 6 | exbii | |- ( E. x ( u `' _E x /\ v `' _E x ) <-> E. x ( x e. u /\ x e. v ) ) |
| 8 | 7 | anbi2i | |- ( ( ( u e. A /\ v e. A ) /\ E. x ( u `' _E x /\ v `' _E x ) ) <-> ( ( u e. A /\ v e. A ) /\ E. x ( x e. u /\ x e. v ) ) ) |
| 9 | 8 | opabbii | |- { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( u `' _E x /\ v `' _E x ) ) } = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( x e. u /\ x e. v ) ) } |
| 10 | 1 9 | eqtri | |- ,~ `' ( `' _E |` A ) = { <. u , v >. | ( ( u e. A /\ v e. A ) /\ E. x ( x e. u /\ x e. v ) ) } |