This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of subclasses of a transitive relation is a subclass of that relation. (Contributed by RP, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trrelssd.r | ⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| trrelssd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑅 ) | ||
| trrelssd.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑅 ) | ||
| Assertion | trrelssd | ⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trrelssd.r | ⊢ ( 𝜑 → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| 2 | trrelssd.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑅 ) | |
| 3 | trrelssd.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑅 ) | |
| 4 | 2 3 | coss12d | ⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ ( 𝑅 ∘ 𝑅 ) ) |
| 5 | 4 1 | sstrd | ⊢ ( 𝜑 → ( 𝑆 ∘ 𝑇 ) ⊆ 𝑅 ) |