This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coshalfpip | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = - ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 2 | 1 | oveq1i | ⊢ ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) ) |
| 3 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | 3 | mul02d | ⊢ ( 𝐴 ∈ ℂ → ( 0 · ( cos ‘ 𝐴 ) ) = 0 ) |
| 5 | 2 4 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = 0 ) |
| 6 | sinhalfpi | ⊢ ( sin ‘ ( π / 2 ) ) = 1 | |
| 7 | 6 | oveq1i | ⊢ ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 1 · ( sin ‘ 𝐴 ) ) |
| 8 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | 8 | mullidd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 10 | 7 9 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 11 | 5 10 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 − ( sin ‘ 𝐴 ) ) ) |
| 12 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 13 | 12 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 14 | cosadd | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) | |
| 15 | 13 14 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 16 | df-neg | ⊢ - ( sin ‘ 𝐴 ) = ( 0 − ( sin ‘ 𝐴 ) ) | |
| 17 | 16 | a1i | ⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( 0 − ( sin ‘ 𝐴 ) ) ) |
| 18 | 11 15 17 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = - ( sin ‘ 𝐴 ) ) |