This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995) Use a similar proof to copsex4g to reduce axiom usage. (Revised by SN, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex2g.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | copsex2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2g.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | eqcom | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ↔ 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | opth | ⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝐴 , 𝐵 〉 ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 6 | 2 5 | bitri | ⊢ ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 7 | 6 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ) |
| 8 | 7 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ) |
| 9 | id | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 10 | 9 1 | cgsex2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝜑 ) ↔ 𝜓 ) ) |
| 11 | 8 10 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 〈 𝐴 , 𝐵 〉 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜓 ) ) |