This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995) Use a similar proof to copsex4g to reduce axiom usage. (Revised by SN, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex2g.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| Assertion | copsex2g | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2g.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 2 | eqcom | |- ( <. A , B >. = <. x , y >. <-> <. x , y >. = <. A , B >. ) |
|
| 3 | vex | |- x e. _V |
|
| 4 | vex | |- y e. _V |
|
| 5 | 3 4 | opth | |- ( <. x , y >. = <. A , B >. <-> ( x = A /\ y = B ) ) |
| 6 | 2 5 | bitri | |- ( <. A , B >. = <. x , y >. <-> ( x = A /\ y = B ) ) |
| 7 | 6 | anbi1i | |- ( ( <. A , B >. = <. x , y >. /\ ph ) <-> ( ( x = A /\ y = B ) /\ ph ) ) |
| 8 | 7 | 2exbii | |- ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> E. x E. y ( ( x = A /\ y = B ) /\ ph ) ) |
| 9 | id | |- ( ( x = A /\ y = B ) -> ( x = A /\ y = B ) ) |
|
| 10 | 9 1 | cgsex2g | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( ( x = A /\ y = B ) /\ ph ) <-> ps ) ) |
| 11 | 8 10 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |