This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgsex2g.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜒 ) | |
| cgsex2g.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cgsex2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex2g.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝜒 ) | |
| 2 | cgsex2g.2 | ⊢ ( 𝜒 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 4 | 3 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) → 𝜓 ) |
| 5 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 6 | elisset | ⊢ ( 𝐵 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 7 | 5 6 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 8 | exdistrv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 10 | 1 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 𝜒 ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ∃ 𝑦 𝜒 ) |
| 12 | 2 | biimprcd | ⊢ ( 𝜓 → ( 𝜒 → 𝜑 ) ) |
| 13 | 12 | ancld | ⊢ ( 𝜓 → ( 𝜒 → ( 𝜒 ∧ 𝜑 ) ) ) |
| 14 | 13 | 2eximdv | ⊢ ( 𝜓 → ( ∃ 𝑥 ∃ 𝑦 𝜒 → ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ) ) |
| 15 | 11 14 | syl5com | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝜓 → ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ) ) |
| 16 | 4 15 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∃ 𝑦 ( 𝜒 ∧ 𝜑 ) ↔ 𝜓 ) ) |