This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | constlimc.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| constlimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | ||
| constlimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| constlimc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | constlimc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | constlimc.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | constlimc.a | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 3 | constlimc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 4 | constlimc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 5 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 6 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 1 ∈ ℝ+ ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → 𝑣 ∈ 𝐴 ) | |
| 8 | vex | ⊢ 𝑣 ∈ V | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 10 | csbtt | ⊢ ( ( 𝑣 ∈ V ∧ Ⅎ 𝑥 𝐵 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
| 11 | 8 9 10 | mp2an | ⊢ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 = 𝐵 |
| 12 | 11 3 | eqeltrid | ⊢ ( 𝜑 → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
| 14 | 1 | fvmpts | ⊢ ( ( 𝑣 ∈ 𝐴 ∧ ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝐹 ‘ 𝑣 ) = ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) |
| 15 | 7 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑣 ) = ⦋ 𝑣 / 𝑥 ⦌ 𝐵 ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) = ( ⦋ 𝑣 / 𝑥 ⦌ 𝐵 − 𝐵 ) ) |
| 17 | 11 | oveq1i | ⊢ ( ⦋ 𝑣 / 𝑥 ⦌ 𝐵 − 𝐵 ) = ( 𝐵 − 𝐵 ) |
| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐵 ) ) ) |
| 20 | 3 | subidd | ⊢ ( 𝜑 → ( 𝐵 − 𝐵 ) = 0 ) |
| 21 | 20 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 − 𝐵 ) ) = ( abs ‘ 0 ) ) |
| 23 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 24 | 23 | a1i | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ 0 ) = 0 ) |
| 25 | 19 22 24 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = 0 ) |
| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) = 0 ) |
| 27 | rpgt0 | ⊢ ( 𝑦 ∈ ℝ+ → 0 < 𝑦 ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → 0 < 𝑦 ) |
| 29 | 26 28 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) |
| 30 | 29 | a1d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
| 31 | 30 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
| 32 | brimralrspcev | ⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) | |
| 33 | 6 31 32 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
| 34 | 33 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) |
| 35 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 36 | 35 1 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 37 | 36 2 4 | ellimc3 | ⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐹 limℂ 𝐶 ) ↔ ( 𝐵 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑣 ∈ 𝐴 ( ( 𝑣 ≠ 𝐶 ∧ ( abs ‘ ( 𝑣 − 𝐶 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑣 ) − 𝐵 ) ) < 𝑦 ) ) ) ) |
| 38 | 3 34 37 | mpbir2and | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐹 limℂ 𝐶 ) ) |