This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conjghm.x | |- X = ( Base ` G ) |
|
| conjghm.p | |- .+ = ( +g ` G ) |
||
| conjghm.m | |- .- = ( -g ` G ) |
||
| conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
||
| Assertion | conjsubg | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conjghm.x | |- X = ( Base ` G ) |
|
| 2 | conjghm.p | |- .+ = ( +g ` G ) |
|
| 3 | conjghm.m | |- .- = ( -g ` G ) |
|
| 4 | conjsubg.f | |- F = ( x e. S |-> ( ( A .+ x ) .- A ) ) |
|
| 5 | 1 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ X ) |
| 6 | 5 | adantr | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S C_ X ) |
| 7 | df-ima | |- ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) |
|
| 8 | resmpt | |- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ( x e. S |-> ( ( A .+ x ) .- A ) ) ) |
|
| 9 | 8 4 | eqtr4di | |- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = F ) |
| 10 | 9 | rneqd | |- ( S C_ X -> ran ( ( x e. X |-> ( ( A .+ x ) .- A ) ) |` S ) = ran F ) |
| 11 | 7 10 | eqtrid | |- ( S C_ X -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) |
| 12 | 6 11 | syl | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) = ran F ) |
| 13 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 14 | eqid | |- ( x e. X |-> ( ( A .+ x ) .- A ) ) = ( x e. X |-> ( ( A .+ x ) .- A ) ) |
|
| 15 | 1 2 3 14 | conjghm | |- ( ( G e. Grp /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 16 | 13 15 | sylan | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ ( x e. X |-> ( ( A .+ x ) .- A ) ) : X -1-1-onto-> X ) ) |
| 17 | 16 | simpld | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) ) |
| 18 | simpl | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> S e. ( SubGrp ` G ) ) |
|
| 19 | ghmima | |- ( ( ( x e. X |-> ( ( A .+ x ) .- A ) ) e. ( G GrpHom G ) /\ S e. ( SubGrp ` G ) ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) |
|
| 20 | 17 18 19 | syl2anc | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ( ( x e. X |-> ( ( A .+ x ) .- A ) ) " S ) e. ( SubGrp ` G ) ) |
| 21 | 12 20 | eqeltrrd | |- ( ( S e. ( SubGrp ` G ) /\ A e. X ) -> ran F e. ( SubGrp ` G ) ) |