This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of congruence by integer multiple (see ProofWiki "Congruence (Number Theory)", 11-Jul-2021, https://proofwiki.org/wiki/Definition:Congruence_(Number_Theory) ): An integer A is congruent to an integer B modulo M if their difference is a multiple of M . See also the definition in ApostolNT p. 104: "... a is congruent to b modulo m , and we write a == b (mod m ) if m divides the difference a - b ", or Wikipedia "Modular arithmetic - Congruence", https://en.wikipedia.org/wiki/Modular_arithmetic#Congruence , 11-Jul-2021,: "Given an integer n > 1, called a modulus, two integers are said to be congruent modulo n, if n is a divisor of their difference (i.e., if there is an integer k such that a-b = kn)". (Contributed by AV, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | congr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moddvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) | |
| 2 | 1 | 3coml | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 4 | 3 | nnzd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 | zsubcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 7 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = ( 𝐴 − 𝐵 ) ) ) | |
| 8 | 4 6 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = ( 𝐴 − 𝐵 ) ) ) |
| 9 | 2 8 | bitrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = ( 𝐴 − 𝐵 ) ) ) |