This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffn.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| comfffn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| comffn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comffn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| comffn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| comffn.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | comffn | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffn.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| 2 | comfffn.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | comffn.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | comffn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | comffn.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | comffn.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) | |
| 8 | ovex | ⊢ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ∈ V | |
| 9 | 7 8 | fnmpoi | ⊢ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) |
| 10 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 11 | 1 2 3 10 4 5 6 | comffval | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) ) |
| 12 | 11 | fneq1d | ⊢ ( 𝜑 → ( ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ↔ ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑍 ) 𝑓 ) ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ) ) |
| 13 | 9 12 | mpbiri | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) Fn ( ( 𝑌 𝐻 𝑍 ) × ( 𝑋 𝐻 𝑌 ) ) ) |