This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalized composition operation is a function. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffn.o | |- O = ( comf ` C ) |
|
| comfffn.b | |- B = ( Base ` C ) |
||
| comffn.h | |- H = ( Hom ` C ) |
||
| comffn.x | |- ( ph -> X e. B ) |
||
| comffn.y | |- ( ph -> Y e. B ) |
||
| comffn.z | |- ( ph -> Z e. B ) |
||
| Assertion | comffn | |- ( ph -> ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffn.o | |- O = ( comf ` C ) |
|
| 2 | comfffn.b | |- B = ( Base ` C ) |
|
| 3 | comffn.h | |- H = ( Hom ` C ) |
|
| 4 | comffn.x | |- ( ph -> X e. B ) |
|
| 5 | comffn.y | |- ( ph -> Y e. B ) |
|
| 6 | comffn.z | |- ( ph -> Z e. B ) |
|
| 7 | eqid | |- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) |
|
| 8 | ovex | |- ( g ( <. X , Y >. ( comp ` C ) Z ) f ) e. _V |
|
| 9 | 7 8 | fnmpoi | |- ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) |
| 10 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 11 | 1 2 3 10 4 5 6 | comffval | |- ( ph -> ( <. X , Y >. O Z ) = ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) ) |
| 12 | 11 | fneq1d | |- ( ph -> ( ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) <-> ( g e. ( Y H Z ) , f e. ( X H Y ) |-> ( g ( <. X , Y >. ( comp ` C ) Z ) f ) ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) ) |
| 13 | 9 12 | mpbiri | |- ( ph -> ( <. X , Y >. O Z ) Fn ( ( Y H Z ) X. ( X H Y ) ) ) |