This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with an indexed union. (Contributed by NM, 21-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coiun | ⊢ ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) = ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | ⊢ Rel ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) | |
| 2 | reliun | ⊢ ( Rel ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐶 Rel ( 𝐴 ∘ 𝐵 ) ) | |
| 3 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 4 | 3 | a1i | ⊢ ( 𝑥 ∈ 𝐶 → Rel ( 𝐴 ∘ 𝐵 ) ) |
| 5 | 2 4 | mprgbir | ⊢ Rel ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) |
| 6 | eliun | ⊢ ( 〈 𝑦 , 𝑤 〉 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ↔ ∃ 𝑥 ∈ 𝐶 〈 𝑦 , 𝑤 〉 ∈ 𝐵 ) | |
| 7 | df-br | ⊢ ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ↔ 〈 𝑦 , 𝑤 〉 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ) | |
| 8 | df-br | ⊢ ( 𝑦 𝐵 𝑤 ↔ 〈 𝑦 , 𝑤 〉 ∈ 𝐵 ) | |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐶 𝑦 𝐵 𝑤 ↔ ∃ 𝑥 ∈ 𝐶 〈 𝑦 , 𝑤 〉 ∈ 𝐵 ) |
| 10 | 6 7 9 | 3bitr4i | ⊢ ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ↔ ∃ 𝑥 ∈ 𝐶 𝑦 𝐵 𝑤 ) |
| 11 | 10 | anbi1i | ⊢ ( ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 12 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐶 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑤 ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ∃ 𝑤 ∃ 𝑥 ∈ 𝐶 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 15 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐶 ∃ 𝑤 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ∃ 𝑤 ∃ 𝑥 ∈ 𝐶 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) | |
| 16 | 14 15 | bitr4i | ⊢ ( ∃ 𝑤 ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐶 ∃ 𝑤 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 17 | vex | ⊢ 𝑦 ∈ V | |
| 18 | vex | ⊢ 𝑧 ∈ V | |
| 19 | 17 18 | opelco | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) ↔ ∃ 𝑤 ( 𝑦 ∪ 𝑥 ∈ 𝐶 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 20 | 17 18 | opelco | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑤 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 21 | 20 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐶 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐶 ∃ 𝑤 ( 𝑦 𝐵 𝑤 ∧ 𝑤 𝐴 𝑧 ) ) |
| 22 | 16 19 21 | 3bitr4i | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐶 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) |
| 23 | eliun | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 ∈ 𝐶 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ 𝐵 ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) ) |
| 25 | 1 5 24 | eqrelriiv | ⊢ ( 𝐴 ∘ ∪ 𝑥 ∈ 𝐶 𝐵 ) = ∪ 𝑥 ∈ 𝐶 ( 𝐴 ∘ 𝐵 ) |