This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | codir | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 2 | df-br | ⊢ ( 𝑥 ( ◡ 𝑅 ∘ 𝑅 ) 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ) | |
| 3 | brcodir | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( ◡ 𝑅 ∘ 𝑅 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) ) | |
| 4 | 3 | el2v | ⊢ ( 𝑥 ( ◡ 𝑅 ∘ 𝑅 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) |
| 5 | 2 4 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ↔ ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) |
| 6 | 1 5 | imbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 7 | 6 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 8 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 9 | ssrel | ⊢ ( Rel ( 𝐴 × 𝐵 ) → ( ( 𝐴 × 𝐵 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ 𝑅 ∘ 𝑅 ) ) ) |
| 11 | r2al | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) ) | |
| 12 | 7 10 11 | 3bitr4i | ⊢ ( ( 𝐴 × 𝐵 ) ⊆ ( ◡ 𝑅 ∘ 𝑅 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ( 𝑥 𝑅 𝑧 ∧ 𝑦 𝑅 𝑧 ) ) |