This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnvf1o . (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvf1olem | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ( 𝐶 ∈ ◡ 𝐴 ∧ 𝐵 = ∪ ◡ { 𝐶 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 𝐵 } ) | |
| 2 | 1st2nd | ⊢ ( ( Rel 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) | |
| 3 | 2 | adantrr | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ) |
| 4 | 3 | sneqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐵 } = { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 5 | 4 | cnveqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐵 } = ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 6 | 5 | unieqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐵 } = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 7 | 1 6 | eqtrd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } ) |
| 8 | opswap | ⊢ ∪ ◡ { 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 } = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 | |
| 9 | 7 8 | eqtrdi | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 = 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ) |
| 10 | simprl | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 ∈ 𝐴 ) | |
| 11 | 3 10 | eqeltrrd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
| 12 | fvex | ⊢ ( 2nd ‘ 𝐵 ) ∈ V | |
| 13 | fvex | ⊢ ( 1st ‘ 𝐵 ) ∈ V | |
| 14 | 12 13 | opelcnv | ⊢ ( 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ↔ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 ∈ 𝐴 ) |
| 15 | 11 14 | sylibr | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 ∈ ◡ 𝐴 ) |
| 16 | 9 15 | eqeltrd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐶 ∈ ◡ 𝐴 ) |
| 17 | opswap | ⊢ ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } = 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 | |
| 18 | 17 | eqcomi | ⊢ 〈 ( 1st ‘ 𝐵 ) , ( 2nd ‘ 𝐵 ) 〉 = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } |
| 19 | 9 | sneqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → { 𝐶 } = { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 20 | 19 | cnveqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ◡ { 𝐶 } = ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 21 | 20 | unieqd | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ∪ ◡ { 𝐶 } = ∪ ◡ { 〈 ( 2nd ‘ 𝐵 ) , ( 1st ‘ 𝐵 ) 〉 } ) |
| 22 | 18 3 21 | 3eqtr4a | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → 𝐵 = ∪ ◡ { 𝐶 } ) |
| 23 | 16 22 | jca | ⊢ ( ( Rel 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 = ∪ ◡ { 𝐵 } ) ) → ( 𝐶 ∈ ◡ 𝐴 ∧ 𝐵 = ∪ ◡ { 𝐶 } ) ) |