This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
cnv0
Metamath Proof Explorer
Description: The converse of the empty set. (Contributed by NM , 6-Apr-1998) Remove
dependency on ax-sep , ax-nul , ax-pr . (Revised by KP , 25-Oct-2021) Avoid ax-12 . (Revised by TM , 31-Jan-2026)
Ref
Expression
Assertion
cnv0
⊢ ∅ -1 = ∅
Proof
Step
Hyp
Ref
Expression
1
br0
⊢ ¬ y ∅ z
2
1
intnan
⊢ ¬ x = z y ∧ y ∅ z
3
2
nex
⊢ ¬ ∃ y x = z y ∧ y ∅ z
4
3
nex
⊢ ¬ ∃ z ∃ y x = z y ∧ y ∅ z
5
df-cnv
⊢ ∅ -1 = z y | y ∅ z
6
5
eleq2i
⊢ x ∈ ∅ -1 ↔ x ∈ z y | y ∅ z
7
elopabw
⊢ x ∈ V → x ∈ z y | y ∅ z ↔ ∃ z ∃ y x = z y ∧ y ∅ z
8
7
elv
⊢ x ∈ z y | y ∅ z ↔ ∃ z ∃ y x = z y ∧ y ∅ z
9
6 8
bitri
⊢ x ∈ ∅ -1 ↔ ∃ z ∃ y x = z y ∧ y ∅ z
10
4 9
mtbir
⊢ ¬ x ∈ ∅ -1
11
10
nel0
⊢ ∅ -1 = ∅