This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nn0subm and friends. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | ||
| cnsubmlem.3 | ⊢ 0 ∈ 𝐴 | ||
| Assertion | cnsubmlem | ⊢ 𝐴 ∈ ( SubMnd ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsubglem.1 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ ) | |
| 2 | cnsubglem.2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 + 𝑦 ) ∈ 𝐴 ) | |
| 3 | cnsubmlem.3 | ⊢ 0 ∈ 𝐴 | |
| 4 | 1 | ssriv | ⊢ 𝐴 ⊆ ℂ |
| 5 | 2 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 |
| 6 | cnring | ⊢ ℂfld ∈ Ring | |
| 7 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 8 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 9 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 10 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 11 | 8 9 10 | issubm | ⊢ ( ℂfld ∈ Mnd → ( 𝐴 ∈ ( SubMnd ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) ) ) |
| 12 | 6 7 11 | mp2b | ⊢ ( 𝐴 ∈ ( SubMnd ‘ ℂfld ) ↔ ( 𝐴 ⊆ ℂ ∧ 0 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 + 𝑦 ) ∈ 𝐴 ) ) |
| 13 | 4 3 5 12 | mpbir3an | ⊢ 𝐴 ∈ ( SubMnd ‘ ℂfld ) |