This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007) (Revised by AV, 26-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| Assertion | cnmgpid | ⊢ ( 0g ‘ 𝑀 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmgpabl.m | ⊢ 𝑀 = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) | |
| 2 | cnring | ⊢ ℂfld ∈ Ring | |
| 3 | difss | ⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ | |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 6 | eldifsn | ⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ 1 ≠ 0 ) ) | |
| 7 | 4 5 6 | mpbir2an | ⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
| 8 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 9 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 10 | 1 8 9 | ringidss | ⊢ ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → 1 = ( 0g ‘ 𝑀 ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( ℂfld ∈ Ring ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ 1 ∈ ( ℂ ∖ { 0 } ) ) → ( 0g ‘ 𝑀 ) = 1 ) |
| 12 | 2 3 7 11 | mp3an | ⊢ ( 0g ‘ 𝑀 ) = 1 |