This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnfldds as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Mario Carneiro, 6-Oct-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflddsOLD | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 2 | subf | ⊢ − : ( ℂ × ℂ ) ⟶ ℂ | |
| 3 | fco | ⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
| 5 | cnex | ⊢ ℂ ∈ V | |
| 6 | 5 5 | xpex | ⊢ ( ℂ × ℂ ) ∈ V |
| 7 | reex | ⊢ ℝ ∈ V | |
| 8 | fex2 | ⊢ ( ( ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ∧ ( ℂ × ℂ ) ∈ V ∧ ℝ ∈ V ) → ( abs ∘ − ) ∈ V ) | |
| 9 | 4 6 7 8 | mp3an | ⊢ ( abs ∘ − ) ∈ V |
| 10 | cnfldstrOLD | ⊢ ℂfld Struct 〈 1 , ; 1 3 〉 | |
| 11 | dsid | ⊢ dist = Slot ( dist ‘ ndx ) | |
| 12 | snsstp3 | ⊢ { 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ⊆ { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } | |
| 13 | ssun1 | ⊢ { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ⊆ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) | |
| 14 | ssun2 | ⊢ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 15 | dfcnfldOLD | ⊢ ℂfld = ( ( { 〈 ( Base ‘ ndx ) , ℂ 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( .r ‘ ndx ) , · 〉 } ∪ { 〈 ( *𝑟 ‘ ndx ) , ∗ 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ) | |
| 16 | 14 15 | sseqtrri | ⊢ ( { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ∪ { 〈 ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) 〉 } ) ⊆ ℂfld |
| 17 | 13 16 | sstri | ⊢ { 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) 〉 , 〈 ( le ‘ ndx ) , ≤ 〉 , 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ⊆ ℂfld |
| 18 | 12 17 | sstri | ⊢ { 〈 ( dist ‘ ndx ) , ( abs ∘ − ) 〉 } ⊆ ℂfld |
| 19 | 10 11 18 | strfv | ⊢ ( ( abs ∘ − ) ∈ V → ( abs ∘ − ) = ( dist ‘ ℂfld ) ) |
| 20 | 9 19 | ax-mp | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |