This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfdmsn | |- ( ( A e. V /\ B e. W ) -> ( x e. { A } |-> B ) e. ( ~P { A } Cn ~P { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptsnxp | |- ( ( A e. V /\ B e. W ) -> ( x e. { A } |-> B ) = ( { A } X. { B } ) ) |
|
| 2 | snex | |- { A } e. _V |
|
| 3 | distopon | |- ( { A } e. _V -> ~P { A } e. ( TopOn ` { A } ) ) |
|
| 4 | 2 3 | mp1i | |- ( ( A e. V /\ B e. W ) -> ~P { A } e. ( TopOn ` { A } ) ) |
| 5 | snex | |- { B } e. _V |
|
| 6 | distopon | |- ( { B } e. _V -> ~P { B } e. ( TopOn ` { B } ) ) |
|
| 7 | 5 6 | mp1i | |- ( ( A e. V /\ B e. W ) -> ~P { B } e. ( TopOn ` { B } ) ) |
| 8 | snidg | |- ( B e. W -> B e. { B } ) |
|
| 9 | 8 | adantl | |- ( ( A e. V /\ B e. W ) -> B e. { B } ) |
| 10 | cnconst2 | |- ( ( ~P { A } e. ( TopOn ` { A } ) /\ ~P { B } e. ( TopOn ` { B } ) /\ B e. { B } ) -> ( { A } X. { B } ) e. ( ~P { A } Cn ~P { B } ) ) |
|
| 11 | 4 7 9 10 | syl3anc | |- ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) e. ( ~P { A } Cn ~P { B } ) ) |
| 12 | 1 11 | eqeltrd | |- ( ( A e. V /\ B e. W ) -> ( x e. { A } |-> B ) e. ( ~P { A } Cn ~P { B } ) ) |